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1. Introduction.

Let w denote an experimental unit drawn randomly from a popula-
tion 7. The classification problem in its standard form is to devise
rules so as to identify 7 with one of the two given "distinct" popula-
tions "1 ard Ty A set of p real-valued measurements X: px1
is observed on w and it is believed that the distributions of X in

those two populations are different. In this paper we shall assume

that X - Np(g.t).

Let By denote the mean of X in the population “1 (4 = 3.2y,
where ¥y * Uy The classification problem is to find "good" rules for

deciding whether u = Uy, or u =y . When all the parameters L

1 2 g
) and I are known Wald's decision theory [V] may be used to derive
the miminal complete class of decision rules for zero-one loss function.

It is given by the following, except for sets of measure zero [2]:

The rule ck decides u = u1 iff

. o1

(1.1) (x =u) "z o e

) = @=U) ¢ K-V )ZE

It can be proved [2] that the rule ¢ {s the only admissible
ainimax rule.

However, in practice all the parameters are not known, and in
order to differentiate the two populations random (training) samples

from both the populations are obtained. It may be remarked that {f

either of % and u, {is known it is not necessary to draw samples

from both the populations. | | ‘ ‘ y
{ R
| | |
{ |

e ———— —
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Let @& stand for (u, ul. My ), and

(1.2) 0, =({6: yw= My (ul. T 4 [ B < 2 S

1 2’

(1'3) : 2 - {e: U - u-,‘ (ull Uz. D € Q } »

-

where [} is a known set in the space of Bye My and . It may be
noted that in order to control (arbitrarily) both probabilities of
incorrect classifi{cation certain conditions must be imposed on @

and sequential sampling schemes may have to be used [5). However, in

standard practice £ 1is taken to be the set

Q= {(u T): » pv % -
(1.4) { _(Ll. oo ) Hys Mo L S My E3 Moo is positive

definite}.

Following Fisher (7] a set of heuristic rules (called plug-in
rules) may be devised by first choosing some good estimates of the
unknown parameters and replacing the unknown paramaters in <¢fk by
their respective estimates. We shall call such a rule ﬂ: when

the standard estimates are used.

Let X‘I. “asy xtn denote the X-oberservations of the training
i
sample from fi (L1 = 1,2. Define (assume n + nz - 2>0)
3
(1.5 xi I x“/“i = X2
nlJ e "
= - ¥ - gy X - 5 +n, -2
s [3 E 4 X, xl)(xt1 X)) +j f : Xy, - X)) Xy, ) 1/ (ny4m)-2)




When all the parameters are unknown, Fisher's plug-in rules are

given by the following: The rule ¢: decides u = Hy Lff

R | < RS | s
(1.6) x-%)°sT @-¥)-@-F)°sT @x-%) <k

Using the likelihood-ratio principle Anderson (1] proposed
the following rules when (ul. My L) lies in Q given by (1.4):

The rule wi decides u = 4y Lff

‘5 -1

(.7) a+1mp7t x-x° ¥ (X - %) - A (1+1/n,)

@ - &) s¥ (x-X) <1 -1,

 § 0
where S* = @S, m = ny + n, - 2. (A>0) Note that VL - @p when

ny = A, The likelihood-ratio rules turn out to be the following

when . 1{s known: The rule 0: decides U = ul iff

x-%) It x-%)

"1 - . "1 =
-+1/m)T (x-%) I x-%) <k,

(1.8) a+1/ap7!

One may also derive some "good" constructive rules from various
optimality criteria. In this paper we shall obtain some good rules
from Wald's decision-theoretic viewpoint, and also from asymmetrical

Neyman-Pearson apprcach. We shall also study the above two classes

of heuristic rules from some optimality criteria.

2. The Unjivariate Case

2=l P W R, qz is known. Without any loss of generality we shall assume

2
that o 1. Let ¢ (q&, q&) stand for a decision rule, where @y




is the probability of deciding L = u  given the observations. We shall

-
consider only the rules based on sufficient statistics X, 31 and 22‘

First we shall make an orthogonal transformation as follows: Define

(2.1) v - k1((1+1/n1)“‘(x-3'5) - (1+1/n2)“’(x55)1,

(2.2) U, = k(AR TR - A4/ THORK)],
(2.3) U3 - k3[x + nlxl + n2x2].
vhere ki'a are chosen so that var(Ui) = 1: { =« 1,23, Note that U, 's are

i

independently distributed. Let E(Ui) -V Then . N(Vi'l)'

g

In terms of (Vl‘ Vo v3) the sets © and @2 as defined in (1.2)-(1.4),

1

are transformed as follows:

Q, = JERY : -V, Vv, = - ) )
(2.4) 1 ((vl, 2,v3) Vi =V, Y, cv, V¢O0, Vq € R
(2.5) Gz - \(vl,vz,v3): Wy B 0N WY, ¢ 0, Vq € R} ,

where ¢ = k2/k1 > 0. (li'l are chosen to be positive.) Note that ¢ > 1.

2.1.1 Baves Rules and Minimax Rules

It is easy to see that by taking a suitable prior distribution of vy

independently of vy and v2 we can get Bayes rules free from UJ' Hence
we shall only consider prior distributions of (vl.vz) and drop 03 from

the argument of ©. Let
2.6 a; = {( n? }
(2.6) e vl,vz). vi =V, v, = (=1)"ev, V¢ 0} .

Consider a prior distribution &(B.Y.vo) which assigns probabilities
gy, (1-8)(1-y), B(1-y), Y(1-8) to the parameter points (vo, cvo), (-vo.-cvo),
(vgr =€Vg)s (=Vg, €vy), respectively, where 0 < € <1, 0 <y <1, vy >0.
It can be seen that the unique @.e) Bayes rule (for zero-one loss function)
against the above prior distribution is given by the following: Decide

(vl. Vas vs) € Ql iff




where ¢ and ¢, are functions of vo. 8, Y and c. Conversely, given

€ and <, it is possible to choose 8,y and Yo appropriately. Another
class of Bayes rules may be obtained from the following prior distributions:
The probabilicty that (vl,vz) € Q: is &i. and given that Vv

1
vz - (-1)1cv the distribution of v 1is N(O, rz). The unique (a.2) Bayes

-V.

rule against the above prior distribution decides (v vy) €0, 1ff

1.“2'

(2.8) u,U, <k,

where k 1is a function of El’ iz and c. Different types of Bayes rules
are given by DasGupta and Bhattacharya [ 3].

Now consider the rule which decides (vl,vz,vs) € nl iff

(2.9) u,U, < 0.

Note that (2.9) is equivalent to

1

(2100 +1/n) THxED? < aa/ny) THx-K R

0

Thus the above rule is the same as wo defined in (1.8). The rule wi

L'

is the unique Bayes rule against the prior E(H.H.vo) for any Yo > 0.

Moreover, the risk of the rule wg is constant over the four-point set
(vo,cvo), (-vo.-cvo), (-vo.cvo), (vo,-cvo). Hence wg is an admissible
minimax rule, and moreover the supremum of the risk of wg is equal to k.
However, ug is not the unique minimax rule (leaving aside the trivial
rule @, z ©, 2 %). To see this, transform (UI’UZ) to (Vl.Vz) by an ortho-
gonal transformation L such that (EVI.EVZ) is proportional to (1, -dl)

“ “
and (1.d2) for (vl.vz) € ﬂl and (vl,vz) € QZ’ respectively, and d, > 0,

1

-
) >0, Let ¢ be the rule which decides (vl.vz) € Ql iff Vlvz < 0.

It can be easily seen (or, see [6]) that the supremum of the risk of ¢ is % .

d

Note that there are many such orthogonal transformations L which will




satisfy the desired property for (Evl, Ev,). It may be shown that neither

of the rules wﬁ and y dominates the other. However, the characterization

of the class of all admissible minimax rules is not known.

Now, instead of the zero-one loss function consider a loss function
which takes the value 0 for correct decisions and equals i(ipl-uzl)
for any incorrect decision, where i is a positive-valued bounded, continuous
function such that (&) -0 as &4 + 0. DasGupta and Bhattacharya [3]
have shown that wp is the unique minimax rule ( and Bayes admissible) for

L

the above loss function when ny = on,.

-

It is clear that neither of wg and aﬁ dominates the other. It is

believed that cﬁ is also admissible.

2.1.2 Invariant Rules. Let us now consider the following conditions on

the rules based on Ul' Lz, U3:

Translation invariance:

(2.11) ©(uy, vy, uy) = Oy, Uy, Uy + b)

for all U Uy, u3 and b € R.
A set of maximal invariants for (2.11) is given by (Ul. Uz). Hence

we shall write a translation-invariant rule as a function of U1 and UZ'

Sign invariance:
(2.12) ©(uy, vy, ug) = @(=u;, ~uy, -uy)
for all Ups Uy, uy.
A translation-invariant rule is sign-invariant {ff it is a function of

(wuy/luyl o w1200,

Symmetry:
(2-13) ‘Dl(ﬂl.-uz.\l:’) e wz(uliuz |u3)

for all Ups ¥y and u

3°




It is clear that both Ql and Qz are unchanged under the transformations

(ul. u,, u3) - (“1' Uy, Uy + ¢) and (ul. Uy, u3) - (-ul. =Uy, -u3). In
terms of x, ;1 and ;é these transformations are respectively
(x, X, xz) - (x+b, xl+b, xz+b) and (x, X, xz) - (-x, X5 -xz).

The sets Ql and Rz are interchanged under the transformation

(v, v, u3) * (“1' =u,, U3). This transformation is obtained by inter-

changing (;1. nl) and (;i. uz). We shall now show that wi is the uni-

formly best translation-invariant, sign-invariant symmetric rule. For
(Vl'VZ‘VJ) € Ql i AN v, =V, vz = -cV) the risk of a translation-invariant,
sign-invariant symmetric rule ¢ is given by

E . dE(U u,)

1t T2

- [ [G&(ul.uz)n(ul;v)n(uz:-cv)
)
+ wz(ul.uz)n(ul;-v)n(uz.cv)
+ {1 = soz(ul.uz)}n(ul;-\))n(uz;-c\))

(2.14) + {1 - c&(ul.uz)}n(ulzv)n(u,;cv)] * du,du,,

where n(u;Vv) {is the density of N(v,1) at u. It may be seen that (2.14)

is minimum (uniformly in v and “3) for wz(ul.u,) = ] when u > 0.

1“2
The above result can also be proved using the distribution of (uluz/luzl,lu,!)

(10].
Kinderman (10] characterized the (essential) complete class among all 1
translation-invariant, sign-invariant rules when o, = .

2.1.3 Best Invariant Similar Test. The classification problem may be viewed

in the light of Neyman-Pearson Theory. We may pose the problem as testing

the hypothesis H1:9 € 31 against the alternative ¢ € 52 .

our attention to the class of tests which are translation-invariant and

We restrict




sign-invariant. Let ¥ be a test function, i.e. Y(X, KI' f,) is the pro-

bability of rejecting “1 given X, X. and iz. Define

1
(2.15) Y, = (1+1/n,) " ¥x-X,)
2. 1 1 1)
(2.16) ¥, = (A4/n) MK, - (141/n) Ha1/n) THRE ) g,
- HE -k PR -
27 Yy = () Ve, o),
where d 1is a constant chosen appropriately to make Var(Yz) = 1. Vv is

translation-invariant it will depend only on Y1 and Yz. Furthermore the

sign-invariance of y means

(2.18)  w(y;ay,) = V(=yy,y,).

Under H1 the means of Yl and Yz are given by

2 = . ’ -B.
(2.19) g, 2 EY, -0, 62 - E\2 = d (1+1/n2) (gl-Lz).

Similarly, the means of Y, and Y, under K, are given by

1 2

(2.20) &) = (+1/0)) " Kiyeu)), &,

1 2" -d(1+1/n2)_5(1+1/n1)-1(u:-u1).

In terms of 61 and 62 the parameter sets may be expressed as

(2.21) a, = \(61,62): 61 -0, 62 ¢ 0},

(2.22) o, = {(61.62): 62 - 361 ¢ 0}

under H, and H,, respectively; a = -d(1+1/n1)'5(1+1/n2)'5. Since ¢

2

is still unknown under Hl we require ¥ to be similar size © for ﬂl' i.e.

(2.23) 50'6”W(Y1.Y2) = a for all 62 ¢ 0.

This is equivalent to
L

(2.24) Y(y,,y,)n(y,:0)dy. = a a.e, (y,).
_L 32 1 1 2

The power of the test ¥ is given by




AL He, L) B vt )

-l [ ‘-61(1+a ) /2

OO0

n(yl:o)n(yz:O)W(yl.yz)

'— Gl(ylﬂyz) -Gl(yl'f'ly,,) i
e + e

(2.25) ‘ ]dyldy2

Using the Neyman-Pearson Lemma in order to maximize
® 8, (y,+ay,) =6 (y,+ay.)
ey v(yl.yz){c L TR A ]

-N

n(yl.O)dy1 :

subject to (2.24) we get the following optimum test:

* ]
(2.27) v (yy.y,) =1 LEE |y +ay,| > k(y,),

where k(y,) 1is chosen 30 that
-ay,+k(y,)

(2.28) f n(y i0)dy, = 1= . !
-ayz-k(yz) ]

*
Thus is the uniformly most powerful invariant similar test. The above

result is due to Schaafsma [12).

2.2 The common variance 02 is unknown

It may be easily seen that the rules given by (2.7) and (2.8) are still

unique Baves. Moreover, the rule vt

(2.10) holds and it is admissible minimax. When n=n, Das Gupta and
1

Bhattacharya (3] have shown that the rule Y is the unique (a.e.) mini-

is the one which accepts 8 € ?1 if

max when the loss for incorrect decision is (] “1'“2‘/0)’ where ¢ {is a

positive valued, bounded, continuous function such that £(4) -0 as 4 + 0.

To see all the above results, not that (U 2 3.S) are sufficient sta-

tistics in this case and S {s distributed independently of (U1'02’03)‘

It also follows that wi is the uniformly best translation-invariant, sym-

metric rule. To see this, condition on S and fix o, t

Schaafsma [13] has shown that the following critical region for testing

HI against H, 1is (i) similar of size a for Hl' (i1) unbiased for H,, and

A




(111) asymptotically (as nin(nl.n,) * @ ) most stringent among all level

4 tests:

A : _ o
(2.29) ¥ sign(¥,) > /8 taj4m,=2,0 °
- '

where Yl and Y, are given in (2.15) and (2.16), § 4is given in (1.5),

and ¢t is the upper 100aX point of the Student's t distribution

n1¢nﬁ-2.n

with nl¢n,-2 degrees of freedom. However, it is very likely that this test

is not admissible.

It follows from Kiefer and Schwartz [9] that the rule vi

Bayes rule. We shall give a sketch of the prior distribution against which

is a (unique)

,; is unique Bayes. Consider U U.,.U3 as defined in (2.1) - (2.3). Then

10

s
Fi's are independently distributed, and U1 o N(vi. c¢"). Moreover, under

- - Wy ; h gl = el TR
& € °y (i.e. (.1.\:,.3) € “1) we have \1 vV, \2 (=1)"¢cv, V¢ 0. The

prior distribution is given as follows:

{3) P O E {

(44) Given € € o the conditional distribution of (v,vj.cz)

is derived from the following:

(118) Olven o = (1+12)~1. the conditional distribution of

v
(~§, —%) is the same as that of (1, TVS), where V
o o*

and V3 are independently distributed with

9
~ N(O, 1+17). &
2)-(n*1)/2

V - N0, (14+1%)/(14c?)) and vy

(14b) The density of T 4s proportional to (141

10 «




3. Multivariate Case: [ known

Without any loss of generality we shall assume that L = Ip. First
we shall derive a class of Bayes rules and obtain an admissible mini-

max rule. Define U, ,U,,U, and k, ,k, as in (2.]) - (2.3), except

: Mg gl | : G
that Ut'n are now p*1 vectors and Ux ~ Np(v, Ip). Correspondingly
redefine the sets Ji as follows:
{
O = . > @ - . P
(3.1) ay {(vl’vZ'VJ)' Vi " VeV, = (-1 ev, #0; Vv, €R },

i =1,2. As before U3 may be eliminated from a Bayes rule by taking

a fixed distribution, independent of (vl.vz). under both Ql and Qz.
Now consider the prior distribution which assigns the probability Ei to
31 and, given Vl - v,vz - (-l)lcv. the distribution of Vv

is Np(O.tzlp). It can now be seen that the unique (a.e.) Bayes rule

against the above prior distribution decides (vl,u,,u]) € ﬂl iff

2 5 <
(3.2) U1 U2 < k,
where k {s a function of 51 and £,: conversely, given k the
probability il and £, can be suitably cuusen. Thus any likelihood-

ratio rule q{ is Bayes and admissible.

we shall now show that uﬁ is minimax. First we shall consider
a different prior distribution against which uf is unique Baves.
As before, v3 can be eliminated from the problem. Now consider a
prior distribution which assigns equal probabilities to the sets

*
and 32. where

(3.3) Q" & {(v,,v): v, ® Vv, = (=) lev, v 60, v €
. \ l. 2 . 1 . 2 . . .




*
Moreover, given that (vl.v,) € ﬁi. the distribution of Vv 1is taken to
be uniform over the surface of the hypershpere V' v = Az. See Das Gupta
(4] to get a detailed proof of the fact that @g is unique (a.e.) Bayes

against the above prior distribution. To see that cg is minimax, note

that the risk of co is constant over the set

L
{ ) ) \ \ .y ” I2‘
(3.4) \(»1,\2,.3): vy = \',vz s=cV, V' u=s §}
] { ) v . ) - LV s cV e .‘2'.
U ‘(\1,»2.»3). I v,»z V-V Y 7. i) B

Das Gupta [4] has also shown that the rule ¢8 is the unique (a.e.)

minimax when the loss for any correct decision is zero, and the loss for
deciding u = by incorrectly is
» -1 - -
(3.3) LECL + T/0.) 7 fu =) o~ )],
i i i
where L is a positive-valued, bounded, continuous function such that
£(4) -0 as & v 0.
As in (2.11) we may call a rule ¢ translation-invariant if
y A A ’
(3.6) Q(Ll.tz.b3) O(LI.U2.03 + b),

for all b € Rp. Clearly, (UI'U’) is a set of maximal invariants. A

rule ¢ 4is called orthogonally-invariant {f
(3.8) °(U1'U2'U3) - @(OUI,OUZ.OU3).

for all orthogonal p * p matrices O.

Kudo [11] considered the following "symmetry' condition for a trans-

lation-invariant rule ¢:

/

(3.9) B (e:(1 + 1/::2)'1 23) = B,(¢:(1 + 1/:\1)'“24),

where ei(Q:d) - Eeo when d = (u1 - uz) and u = by Moreover, he

i

«]%=




required Bi(o;d) to depend on d only through d°d. This condition
clearly holds if ¢ 1is translation-invariant and orthogonally-invariant.
Note also that for a translation-invariant and an orthogonally-invariant
rule ¢ satisfying (2.13) the condition (3.9) holds. Kudo [1l1l] has

shown that og simultaneously maximizes both BI(O;d) and Bz(O:d) in
the classof all translation-invariant rules satisfying (3.9) and for
which Bi(é;d) depends on d only through d°d. This can be seen easily
by integrating the probability of correct classification with respect to

a
the uniform distribution of Vv over Vv v = A% yhere v, = ‘J.V2 - (-l)icV.

1
Rao [15] has considered the class E* of rules whose probabilities

of misclassification depend only on
(3.10) A% - (M, - u,)” £ (B, =4,)
. = 1 I‘-, - .- n/ e

o, 9
For a rule ¢ € $* let 61(0:52) and G,(9;4%) be the error probabilities

when u = ;1 and U = o respectively. Rao [15] has posed the problem

of minimizing

{ 2 D
—= {aG, (#;47) + bG,($:4%)}
\ 2 1 2

(3.11) 5
du !A-O

subject to the condition that the ratio of GI(Q:O) to Gz(®:0) is equal

to some specified constant, The resulting optimum rule decides u = ul L1€€

(3.12) al(X-X o) * (14-1/n1)(x-!2)1’ [(x-X P - (1+1/0))(x-X) ]

- b[(1+1/n)(X-K)) = (X-X)]" (A +1/n)(X R) - (X-K)] > &

The above rule coincides with 30 wvhen n, = n

L 1 and a = b, k =« 0,

2

=15

U

e e s Micegaca,



4., Multivariate Case: . unknown

)
First we shall show that a likelihood-ratio rule ?L is unique

(a.e.) Baves and hence is admissible (for zero-one loss function). Note

that L'I.U,,.U3 and S ore sufficient statistics in this case, where Ui's

(in p ¥ 1 vector notations) are given by (2.1) - (2.3) and S 1is given by

(1.5). Here Ui - Np(vi. ). We now consider the following prior distri-

bution.

.
adl

(1) P(BED) =L

(i1) Given ¢ € Gi (1.e., Vy & ¥V, = (-l)icV), the conditional
distribution of (v.v3. L) s derived from the following:

1

(iia) Given [ " = Ip 4+ Tt°(1: p x 1), the conditional distri-
bution of (:'1 v, o Vy) is the same as the distribution of (TV, TV,),
where V and V3 are independently distributed as

2.-1 " ”

N(O, (1+c¢) (1+1°1)) and N(O, 14+177),
respectively.

(1ib) The density of T 4is proportional to (14-1’7)-('*'1),2,

vhere m > p - 1.

Following a simplified version of the results of Kiefer and Schwartz
[9]) it can be shown that a unique (a.e.) Baves rule against the
above prior distribution accepts . = . if (1.7) holds, where )

1

is a function of £, 's; conversely, given ) the constants E"s can

i
by appropriately chosen.
Das Gupta (4] has considered aclass E@' of rules invariant under the

following transformations:

(4.1 (X,X,X,,8) = (AX + b.Aﬁl +b, Aiz + b, ASAT),

)b

S B S Y P TN S P TRy WD APk 15 w0 O A

e A




where A 1is any p X p nonsingular matrix and b 1s any vector in Rp.

It is shown [ 4] that a set of maximal invariants is given by (nll,nlz.nzz).
where
(4.2) a.=0.°sty/a
g i) i 3
¥hen Vv, = v,v. = (-1t v Il - a2 h int density of ( m,.)
n 1 Vs - cv, , the joint density o nll"lZ' 22

is given by [14]

Py (@)@ ,0m, i 80 = K expl-aP(1+c?y/2) ) PP/
, PO, . 5
(4.3) j:0 33(2 a%) hj('ll'nIZ'mZZ)' 3
where

.+ 1D + *n. + (1 ¢ W3
e 7 12 22 '

(4.4) h (m,,,m . ,m ) =
[ § S b Loy 3 %(”2) +3
112 + M|

m m
(4.5) IM| = det M, M = (u“ _”') ¢
12 ™22

(4.6) m - ™ n2 - s

and K > 0, 31 >0 are numerical constants.
Consider a prior distribution which assign equal probabilicties to
31 and, given 9 € @i (1.e. VISV, = (-l)tCV) the value of
v £l e 8% 10 held fimed. The Bayes rule in o** against the above

prior distribution decides 9 € @1 1£f
(4.7) ™, < 0

To see this, note that for a > 0

(4.8) (a + x)3 < (a - 07
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for any positive j if x < 0. The relation (4.7) is the same as (1.7)

w{ is admissible and
minimax in E** (4]. Das Gupta (4] has also shown that wi is the

unique (a.e.) minimax in Eﬁ* if the loss for any correct decision is

for X = 1, It now follows easily that the rule

zero and the loss for deciding U = L, incorrectly is

i

e -1 . s '.‘-1 ‘
(‘0.9) L[(l + 1/“1) (L - \ui) . (LA - hi)l.

where L 1is a positive-valued, bounded, continuous function such that
2(4) -0 as AL + 0.

Again for this case Rao [15) considered the class 3}* of rules whose
probabilities of misclassification depend only on Az given in (3.10).
Then he derived the optimum rule which minimizes the expression given by
(3.11) subject to the condition of similarity for the subset of the para-

meters given by = .. The optimum rule decides u = ul {£f

s Nl o
(4.10) -((x-il) - (1 + 1/n1>(x-i2))’ 5‘1((x-i1) -1+ 1/n1)(x-22)]

- BLX-Ry) = (1 + 1/n) (XKD 1" B7HG-R,) = (1 + 1/np) (x-K)))

> c(B),
where
n nz »
(4.11) B=mS+ ——1——-““14_“2 [+ 1/n2)(x-i1) (x-X))

+ (1 4+ 1/n1)(x-x2)‘<x-i2) - z(x-il)‘(x-iz)l.

It is not clear why Rao imposed the similarity condition even after
restricting to the class E*. One may directly consider the class of rules
invariant under (4.1) and try to minimize (3.11) subject to the condition
that G‘(O;O) is equal to a specified constant. Using (4.3) it can be

found that the optimum rule decides u ¥ iff

ol




2 2 2 2
(4.12) atky my) + kG my, + (k] + k) M| - 2k, k,m,

2

2 2 y -1
o b(kl m, +k my, + (k] + k3) M| + 2k1k2112)(1 + 1/n1)

> 1 det (I2 + M.

As in (2.29) a similar region for 91 may be constructed for this case

also. It is given by the following:
1
(4.13) Y‘(us+7Y‘)‘1\'/(Y‘(msﬂr\")'lv12

" 2 11 : S - b & § 2

where Yl and Yz are given in (2.15) and (2.16)

-

in vector notations.




5. Multivariate Case: ul and u2 known

In this case the plug-in rules are given by the following: Decide

U= “1 if

W) B-p)’A @ -u)=@-w) atax-u) >
» 1 " 2 2 ’

where

(4.15) A= (@S + nl(x1 - ul)(x1 - ul)' + nz(x2 - uz)(x2 - uz)].

On the other hand, a likelihood-ratio rule decides L = u1 iff

1+ (X-u)” A™Nx - w)

2

(4.16) > A LD = ).

)

. ,=1
1+ (X~ Ll) A (X - B

Define m* = m + 2,

Without loss of generality we may assume that u " 0 and

u; = (1,0,...0). Then the problem is invariant under the following trans-

-

formations:
(4.17) (X,A) = (LX,LAL"),
where L 1is a nonsingular p x p matrix of the form

(4.18) 1 le

-18-




it can be seen that a set of maximal invariants is given by

lx

(X) 20 X(2)A30%(2)+ Ay o) vhere
(4.19) fon | Mea ] 2 3 1
A= .x-
Ayy | A J P2 Xy /Pt
1 p-1
(4.20) a A ’1

11.2 " A1 " A2 Ay Ay

i’ oLy
(4.21) X, 2 =X - Ay Ay Xy

AL is distributed, independently of (xl.,. (2) 22 12
va 1

Jll.zku.-p+1; given x(z) 22 (2). the distribution of X

), as

1.2 s

N(d, © (1 + X )), and X, is distributed as the

11.2 (2) ”2 (2) (2) 22 (2)
ratio of independent Xp-l and xn‘_p+, variates. In the above d

- - U g
is equal to 0 or 1 according as ¥ “1 or M 2 and 1.2

It can be shown now that the

is

the residual variance of xl given x(z).

following rule is minimax (and Bayes) in the class of rules invariant

under (4.18): Decide U = Ul - % 5 4

A 5 <
(4.22) Xl.z 1/2.

The relation (4.22) is the same as (4.14) for A = 0, and as (4.16) for

“ = 1. The above region is not similar for u = M- Such a simular

region may be constructed using
1 1

1 2

(4.23) xl.Z(l + X(z)Azzx(z)) (A 11. 2/(-*-9*1»

which {s distributed as Student's' t - distribution with m*-p+l dcgrutl

of freedom when u = My The Mahalanobis distance is equal to (

2
%11.2




in this case. The probabilities of correct classification for the rule
given by (4.22) are the same and they decrease as p increases if 011.2
is held fixed.

This section is new in the literature and it is due to the present

author.
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